Exercise 33

The top of a ladder slides down a vertical wall at a rate of $0.15 \mathrm{~m} / \mathrm{s}$. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of $0.2 \mathrm{~m} / \mathrm{s}$. How long is the ladder?

Solution

Draw a schematic of the ladder at a certain time.

Since we know $d x / d t$ and $d y / d t$ and want to know r, start with the Pythagorean theorem.

$$
r^{2}=x^{2}+y^{2}
$$

Take the derivative of both sides with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}\left(r^{2}\right) & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
2 r \cdot \frac{d r}{d t} & =2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} \\
r \frac{d r}{d t} & =x \frac{d x}{d t}+y \frac{d y}{d t}
\end{aligned}
$$

The ladder's length is a constant, so $d r / d t=0$.

$$
r(0)=(3)(0.2)+y(-0.15)
$$

Solve for y.

$$
\begin{gathered}
0=0.6-0.15 y \\
0.15 y=0.6 \\
y=4
\end{gathered}
$$

Therefore, the length of the ladder is

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+4^{2}}=5 \text { meters. }
$$

